MEASUREMENT AND EVALUATION OF GRASPING IN VIRTUAL REALITY
(Merjenje in ocenjevanje prijemanja v navideznem okolju)

Gregorij Kurillo:

Supervisor: prof. dr. Tadej Bajd
Co-supervisor: prof. dr. Anton Zupan

Contents

- Introduction
- Evaluation and Rehabilitation of Grasping
- Assessment of Grip Force Control
- Training of Grip Force Control
- VR System for Assessment and Rehabilitation
- Conclusion
Hand Function

Assessment of Hand Function

Why evaluate hand function?
- Neural/neuromuscular diseases, CNS injury, trauma
- Follow progress of therapy/disease
- Find optimal treatment for a patient

Assessment of hand function:
- Hand function test: Jebsen, Fugl-Meyer, Smith, ADL
- Manual Muscular Test (MMT)
- Maximal voluntary grip force (MVGF)
Rehabilitation in Virtual Reality (VR)

- What is Virtual Reality?
- VR-augmented vs. VR-based rehabilitation

VR rehabilitation of hand function:
- Jack et al. 2001, VR-enhanced stroke rehabilitation
- Chuang et al. 2002, A VR-based system for hand function analysis
- Merians et al. 2002, VR-augmented rehabilitation of patients following stroke
VR Rehabilitation

Virtual Environment TRAINING

Virtual Environment ASSESSMENT

Sensory System

Patient

Assessment of Grip Force Control
Tracking Task

- What is a tracking task?

- Previous studies:
 - Medicine, rehabilitation, pharmacology, (Wetherell 1996, Jones 2000)
 - Analysis of grip force control in children (Blank et al. 2000)
 - Patients with Parkinson’s disease (Vaillancourt et al. 2001, Kunesch et al. 1995)
 - Training of sensory-motor functions (Kriz et al. 1995)
Grip Measuring Device
Assessment of Grip Force Control in Healthy Subjects

- Effect of age on the grip force control: 12 children (10y), 10 younger adults (25-35y), 10 older adults (50-60y)
- Effect of hand dominancy on performance
- Obtain a control group for subsequent measurements

Sinus Tracking

- Target Tracking (Patient C10, Right Hand, Lateral Grip)
- Target Tracking (Patient S1, Right Hand, Lateral Grip)
- Target Tracking (Patient T3, Right Hand, Lateral Grip)

Child (10 years old)
Older Adult (54 years old)
Young Adult (27 years old)
Results: Accuracy of Tracking in Different Age Groups

Assessment of Grip Force Control in Patients with Neuromuscular Diseases

- Evaluate the effect of neuromuscular diseases on ability to control the grip force in different grips

<table>
<thead>
<tr>
<th>Patient</th>
<th>Gender</th>
<th>Age</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>M</td>
<td>48</td>
<td>LGMD</td>
</tr>
<tr>
<td>P1</td>
<td>F</td>
<td>28</td>
<td>FSHMD</td>
</tr>
<tr>
<td>P2</td>
<td>M</td>
<td>35</td>
<td>SMA3</td>
</tr>
<tr>
<td>P3</td>
<td>F</td>
<td>28</td>
<td>SMA2</td>
</tr>
<tr>
<td>P4</td>
<td>M</td>
<td>23</td>
<td>BMD</td>
</tr>
<tr>
<td>P5</td>
<td>F</td>
<td>28</td>
<td>SMA3</td>
</tr>
<tr>
<td>P6</td>
<td>M</td>
<td>32</td>
<td>BMD</td>
</tr>
<tr>
<td>P7</td>
<td>F</td>
<td>50</td>
<td>SMA3</td>
</tr>
<tr>
<td>P8</td>
<td>M</td>
<td>23</td>
<td>LGMD</td>
</tr>
<tr>
<td>P9</td>
<td>M</td>
<td>36</td>
<td>LGMD</td>
</tr>
<tr>
<td>P10</td>
<td>M</td>
<td>26</td>
<td>BMD</td>
</tr>
<tr>
<td>P11</td>
<td>M</td>
<td>46</td>
<td>SMA3</td>
</tr>
<tr>
<td>P12</td>
<td>F</td>
<td>27</td>
<td>SMA2</td>
</tr>
<tr>
<td>P13</td>
<td>M</td>
<td>24</td>
<td>SMA2</td>
</tr>
<tr>
<td>P14</td>
<td>M</td>
<td>45</td>
<td>SMA3</td>
</tr>
<tr>
<td>P15</td>
<td>M</td>
<td>49</td>
<td>FSHMD</td>
</tr>
<tr>
<td>P16</td>
<td>F</td>
<td>51</td>
<td>FSHMD</td>
</tr>
<tr>
<td>P17</td>
<td>M</td>
<td>59</td>
<td>LGMD</td>
</tr>
<tr>
<td>P18</td>
<td>F</td>
<td>32</td>
<td>LGMD</td>
</tr>
<tr>
<td>P19</td>
<td>M</td>
<td>24</td>
<td>BMD</td>
</tr>
</tbody>
</table>

* control group: 9 healthy subjects
Ramp Target Tracking

Ramp Task – Right Hand, Lateral Grip

Target
Patient P15
Patient P16

Sinus Tracking - Patient P6, Left Hand, Palmar Grip

Patient #1:
Target
Grip Force

Sinus Tracking - Patient P5, Left Hand, Palmar Grip

Patient #2:
Target
Grip Force
Group
- Healthy Subjects
- Patients - Group B
- Patients - Group A

Healthy Subjects

Sinus Target Tracking

Group A
- Cylindrical
- Lateral
- Nipper Pinch
- Tip Pinch
- Spherical

Group B
Assessment of Grip Force Control after Botulinum Toxin (BTX) Treatment

- Evaluate the effect of BTX treatment for spasticity on grip force control
- Follow BTX treatment in 38 year-old female patient (8 years post traumatic brain injury)

Results: BTX Treatment
Results: Before and After BTX Treatment

Tracking Error in BTX Treatment, Sinus Task

Training of Grip Force Control
Training of Patients after Stroke

- Evaluation and training of grip force control in post-stroke patients

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age</th>
<th>Gender</th>
<th>Hemiparesis</th>
<th>Time since onset</th>
<th>Grasp trained</th>
<th>Score at entering</th>
<th>Score at leaving</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>28</td>
<td>M</td>
<td>right</td>
<td>19 months</td>
<td>lateral</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>P2</td>
<td>20</td>
<td>M</td>
<td>left</td>
<td>6 months</td>
<td>cylindrical</td>
<td>31</td>
<td>35</td>
</tr>
<tr>
<td>P3</td>
<td>19</td>
<td>F</td>
<td>right</td>
<td>1 month</td>
<td>lateral</td>
<td>48</td>
<td>50</td>
</tr>
<tr>
<td>P4</td>
<td>44</td>
<td>M</td>
<td>right</td>
<td>1 month</td>
<td>lateral</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>P5</td>
<td>43</td>
<td>F</td>
<td>left</td>
<td>4.5 months</td>
<td>lateral</td>
<td>39</td>
<td>50</td>
</tr>
<tr>
<td>P6</td>
<td>49</td>
<td>M</td>
<td>right</td>
<td>3 months</td>
<td>lateral</td>
<td>12</td>
<td>21</td>
</tr>
<tr>
<td>P7</td>
<td>51</td>
<td>F</td>
<td>right</td>
<td>6 months</td>
<td>lateral</td>
<td>42</td>
<td>47</td>
</tr>
<tr>
<td>P8</td>
<td>36</td>
<td>F</td>
<td>right</td>
<td>6 years</td>
<td>cylindrical</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>P9</td>
<td>72</td>
<td>M</td>
<td>left</td>
<td>1 month</td>
<td>cylindrical</td>
<td>26</td>
<td>39</td>
</tr>
<tr>
<td>P10</td>
<td>79</td>
<td>M</td>
<td>left</td>
<td>4 months</td>
<td>cylindrical</td>
<td>25</td>
<td>30</td>
</tr>
</tbody>
</table>

* Modified Ross functional test (max score 50)
Training Tasks

Maximal grip force:

Randomized ramp target:

Randomized rectangular target:

Modulated sinus target:

Patient P6, Beginning of Training, rrmse=0.915

Patient P6, End of Training, rrmse=0.317

Patient P6, Beginning of Training, rrmse=1.7

Patient P6, End of Training, rrmse=1.41

Patient P6, Beginning of Training, rrmse=1.65

Patient P6, End of Training, rrmse=0.507
Grip Force Tracking System

- ... evaluation of grip strength, muscle fatigue and grip force control
- ... to follow the progress of disease or influence of physical or medicamental therapy on patients
- ... as a training method in rehabilitation after stroke or hand injury
Multi-fingered VR Rehabilitation System

Multi-fingered Grasping in VR

- ... design device to measure of fingertip forces and torques in three fingers
- ... use of isometric input for VR manipulation
- ... develop VR based assessment and rehabilitation system
3By6 Finger Device

F/T measurement → F/T on VR object → Kinematics & Dynamics → Graphic Rendering

{ F = m . a }
{ F = G . fc }

Evaluation of therapy
Patient Database (MS Access)
Multi-fingered grasping and manipulation

\[G_i = Ad^T_{C_i} \cdot B_{C_i} \quad \Rightarrow \quad F_0 = [G_1 \ldots G_i] \cdot \begin{bmatrix} f_{C_1} \\ \vdots \\ f_{C_i} \end{bmatrix} \quad \Rightarrow \quad F_0 = G \cdot f_c \]

\[f_c = (f_{C_1} M_1 \ddot{x} + f_{C_2} \dddot{y} + \ldots + f_{C_n} \dddot{y} g = f_{C_m}) \]
VR Tasks

Task 1: Open the Safe
Task 2: Fill the Jar

Healthy Subject Chronic Post-Stroke Patient

Position Trajectory

Initial position
water tap
position of the jar
Task 3: Elastic Torus
Task 4: Tracking Task

Healthy Subject

Chronic Post-Stroke Patient
Conclusions

- Advantages of VR Rehabilitation:
 - Patient motivation (simple VR vs. complex VR)
 - Adaptability based on patient base-line
 - Automatic data storage
 - Safety
 - Cost efficiency – reduced medical costs

- Disadvantages:
 - Transfer of skills to functional tasks
 - Lack of computer skills of PT’s
 - Expensive equipment
 - Infrastructure for telerehabilitation
Acknowledgment

This work was supported by

Ministry of Higher Education, Science and Technology, Republic of Slovenia

and by

ALLADIN project, funded by the European Commission under the 6th Framework Program, IST Contract No.: IST-2002-507424.

Thank You!

http://robo.fe.uni-lj.si